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ABSTRACT

The space of ellipsoids may be metrized by the Hausdorff distance

or by the sum of the distance between their centers and a distance between

matrices. Various inequalities between metrics are established.

It implies that the square root of positive semidefinite symmetric

matrices satisfies a Lipschitz condition, with a constant which depends

only on the dimension of the space.
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1. Distance between ellipsoids as sets.

Ellipsoids in Rn may be viewed as elements of the set of subsets

of Rn, subsets which could be restricted to be compact, convex and

centrally symmetric. The set of subsets of Rn is usually metrized

by the Hausdorff metric [21:

S(F,F) - Max{Sup InfIx - yi, Sup Infix - yll
yGV yxEE xEE yEF

= Inff6 > 0 : E + 6S D F, F + 6S D E)

where E and F are subsets of Rn, I I represents the Euclidean

norm, and S = {x E Rn : 1x < 11 is the unit ball.

If E and F are convex, then

6(E,F) = Sup{lh(x,E) - h(x,F)l : 1x = 11

where h(x,E) = Sup{(x,y) : y E El is the support function of E (see

Bonnensen-Fenchel [1)) and (.,.) denotes the scalar product.

If E and F are convex and contain the origin in their interiors,

then

S(E,F) = Supftg(x,Ed - g(x,Fd), : Ix| = 11

where Ed =xeRn: (x,y) <1 y E is the dual of E, and

g(x,E d) = Inf{1j > 0 : x E vE d

d
is the distance function, or gauge, of Ed; this follows because

h(x,E) = g(x,E d).

If E and F are convex, full-dimensional, and centrally symmetric

with respect to the origin, then Ed and Fd inherit the same
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properties, and g(x,E d) and g(x,F d ) define norms on Rn . Thus 6(E,F)

may be viewed as a distance between norms on Rn.

The Hausdorff distance is invariant under congruent, but not affine,

transformations, and reduced by projection. It will be assumed throughout

that the space of ellipsoids contains the degenerate ellipsoids. The

space of ellipsoids is not closed under addition.

The following lemma indicates that it will be sufficient to study

ellipsoids centered at the origin.

Lemma 1

Let E and F be two subsets of R, compact, convex and symmetric

with respect to the origin; let E = e + E and F = f + F, then

S(EIF < 6(E,F) + Be-fA < 26(EI,F I )

1(E,F) < l(EF e-fR < 6(EI F

Proof:

S(E 1 ,F1 ) Sup{lh(x,E1) - h(x,F1)j : lxI = l}

= Supflh(x,E) - h(x,F) + (e-f,x)j : lx = 1}

< SupfIh(x,E) - h(x,F)J - xl = l} + Supf (e-f,x) : •xl = 11

= 6(E,F) + He-fl

Conversely

-6(E ,F I ) < h(x,E) -h(x,F) + (e-f,x) < S(E ,F I ) YNxl = 1
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now h(x,E) - h(-x,E) and h(x,F) = h(-x,P) as E and F are symmetric

with respect to the origin, and thus

-S(E ,F) < h(x,E) - h(x,F) - (e-f,x) < 8(E ,F 1 ) Vxi = 1.

Adding and subtracting, one gets:

-6(E ,F ) h(x,E) - h(x,F) < 6(E ,F

-I(E ,F I ) < (e-f,x) < 6(E ,F I ) 1 VIx = 1

and hence 6(E,F) < 6(EI,F I ) and Ie-f| < 85(E I F QED.

2. Ellipsoids as vectors and matrices.

Ellipsoids may also be represented by a vector (its center) and

a matrix (its size, shape and position):

E - e + AS - {x IE : x= e + t, Itl 11

note that h(x,E) - (e,x) + IATxI. If A is nonsingular, then:

E - {xR (x-e) ( )-(x-e) <11

To any ellipsoid is associated an equivalence class of matrices;

in fact E - e + AS -e + AS if and only if A=AO where 0 is an

orthogonal matrix, or equivalently if AA - A. Define now H = AA

and A - H , then, in the remainder of this paper an ellipsoid will

be defined by

1/2
E e + AS e + H S

where A and H are positive semidefinite symmetric matrices. Using
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any of these two definitions there exists a one-to-one correspondence

between ellipsoids and points (e,A) in Rn X p(Rn ) (respectively

(e,H) E Rn x p(Rn)), where p(Rn ) is the set of n x n positive semi-

definite symmetric matrices.

One could have tried to associate to an ellipsoid a lower triangular

matrix L(H = LLT ); L is unique if H is nonsingular, but not necessarily

so if H is singular. This is the key reason why the results of this

paper will not extend to the case of Cholesky factors.

If A is nonsingular, then

E = {xERn : (x-e) TA-2 (x-e) < 11

= {x ER n : (x-e) TH-l(x-e) < 1}

We may now define two matric distances on the space of ellipsoids.

Let E = e + AS = e + H /2S and F = f + BS = f + K /2S be two

ellipsoids in Rn, where A, B, H and K are positive semidefinite

symmetric matrices, then define:

d(E,F) = le-fl + IA-BI

A(E,F) = He-fl + lHK K1/12 = He-fl + 1A 2-B 2 11/ 2

where I I, for matrices, is the spectral norm.

It is clear that d and A satisfy the axioms for a metric (or

distance).

Various inequalities between d, A and 6 will be proved in

the next section; the relationship between d and 6 is the closest

one, as d and 6 are related by inequalities involving constants

depending only upon the dimension of the space.
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The inequalities imply that the three metrics define the same

topology on the space of ellipsoids, but, more strongly, that rates of

convergence can be related.

The inequalities between d and 6 imply that the rates of con-

vergence of a sequence of ellipsoids may be studied within a space of

sets, or a space of matrices, and that the two rates are identical.

3. Inequalities between distances.

If E and F are ellipsoids centered at the origin, and E= e + E,

F f + F, then

d(EI,F 1 ) = Re-fl + d(E,F)

AE ,F ) = He-fl + A(E,F)

and Lemma 1 indicates that it is enough to study ellipsoids centered

at the origin. In that case:

d(E,F) = IA-BI

A(E,F) = OH-KR1/2  1 1A2 -B 2 111 2

8(E,F) = SUp{IHAxl - IBHIJ :Ix = 1}

Theorem 2

Let E = AS and F = BS be two ellipsoids in R, centered at

the origin, where A and B are n x n positive semidefinite symmetric

matrices, then:

k lA-B < SupIlAxl - : Ixl - 11 < IA-BI
n
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or

S(E,F) < d(E,F) < k n S(E,F)

where k n 2%rln (n+2).

Proof:

For the first part, one has

IIAxI - lBxlI < lAx-Exi = l(A-B)xl < HA-BlIxi

and SUPtIIAXI - IBxHj : lxi = 11 < HA-BI.

'1 For the second part, let 6=SupfJIAxI - IBxHJ : IxI 1 and

a n<a <..<,1 n- C1' n < 0nl0 be the ordered-eigenvalues

of A and B (clearly all real and nonnegative numbers).

The maximum characterization for the eigenvalues of Hermitian

matrices gives:

a= Max Min xA~xk S k R I

where S k represents the intersection of any k dimensional subspace

with the unit spherical surface; assume .hat S* gives the maximum.
k

Now define x4 by

**-S

Thus

~2  MM inx T B 2 >MiT B2 xIB)I 2

k Sk xe XES *
k k kC
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and

2 T 2 1 uj 2
aJk mi x A x <

k

it follows that

Ot IBI

the ak k an IA2k* - xI =1,. , n.
'IReversing teargument, k ~ I(Xk-kI <~

The content of the theorem is unchanged if A is replaced by

0 AO and B by 0 BO, where 0 is any orthogonal matrix; hence we

may assume that A is diagonal, and that

a a. Vi = . ,n

Denote by Bk =Be k tekh column of B, where ek is the kt

column of the identity matrix; then

Jak - IBkIj = iIAekI - hek _6 k 1

Hence

I 'k - Bk'I :E 'ok--ki + -a IBkII 26 Vk =1, n

4 Now

IB 12  nb2 >b2

thus

0 < lBI - bk
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n n n

< I (Uskl b bk) I (NBkl - k) < JIB k I a k1 < 2n6

k=l k=l k=l

implying that

O < IBk- bkk < 2n6 Yk = 1, ..., n

This leads to:

a -bkkl :S- 1k'Ikl + 10k I~kl + JIB < (2n+3)6.

Let D =Diag (b kk) and x be any vector of unit length, then:

uBAn - ripnnBAn -n~xI + jx u - IDxIJ

< 6 + NA-DI < 6 + (2n+3)6 (2n+4)6,

ias |A-D I  Max ICk -bkkl < (2n+3l6.

It remains to show that the off diagonal elements of B are bounded

by a multiple of S. If bii = O or bkk = 0, 0 (i k)

as bik < biibkk by the positive semidefiniteness of B. So assume

that bii > 0, bkk > 0, and let a = bii, b = bkk, c = lb ik and

a = +1 (resp. -1) if b is positive (resp. negative).

= 1 (be. + cae

Bz= 1 IbB. + aaBk e
i -k

I I(ab+ac)e. + o(ab+bc)ek + (bb + aabjk)e I

1 2-+2 1 k joi,k
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>4 > 1 I(ab+ac)e. + a(ab+bc)ek

- 1 ((ab+ac) +~ (ab+bc) 2 ) 1

c (2 + 2 abc(a+b) +2 a2b2 /

Y~ab+
+d)

where this last equation defines d (d > 0).

V'~ab
Now, as IDzI it follows t},at d < IBzI -IDAI < (2n+4)6.

The value of d is given by the positive root of

d2 +2Y'2ab d=c2 +2abc~ab
a2 2

the left-hand side increases with d (d > 0) and is less than the

right-hand side for d = 0 and d = c/952, implying that the value of

d is greater than c/'/5, and

c < dy'2 < 23r2(n+2)6

Thus lb ikI < 2r2(n+2)6, Yi,k, i # k, and

IA-BI 2< Tr(A-B)2

k ik k

n(2n+3) 26 2+ n(n-l)8(n+2) 2 S

2 22
< 8n (n+2)
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hence IA-BI < 2%r2n(n+2)6. QED

The next result, which compares the distances 6 and A, uses

an operator theory proof, and hence carries to infinite dimensional

Hilbert spaces.

Theorem 3
Let E = H/2s and F = K 2S be two ellipsoids in Rn, centered

at the origin, where H and K are positive semidefinite syvmetric

matrices, then

6(E,F) < IH-KI1/2 < [82(E,F) + 6(E,F)Max(D(E),D(F))]1 / 2 ,

where S(E,F) = Sup{! (xTHx)I/2 - (xTKx)1/21 : Ix, = 11, A(E,F) = IH-K I1 / 2 ,

and D(E) = 21H11/ 2 is the diameter of E; it may also be written as:

IH-KI/[(DH-KI + Max(IHI,IKI))1 / 2 + (Max(IHI,IKI)) 1 / 2 ]

< 6(E,F) < NH-KRI /2

Proof:

Let 6 = 6(E,F); thus:

(x THx) /2_ (xTKx) 1/2 < SIxI Vx

hence

XTHX < 621X12 + 26IxI (xTKx)1/2 + xTKx Wx

621x1 2 + xTKx + C-162 1X 2 + £(xTKx) Yx, YC > 0

62 (1+-) Ilx 2 + (1+C)(xTKx) Vx, VC > 0



4 We have

T T 2 -1
x (H-K)x < x ((lE)I + CK)x vx, we > 0

and similarly, reversing the argument,

x T(H-K)x > -x T(6 2(1+n - )1 + flH)x Yx, Yrn >0.

These two equations imply that

IH-KI < ZMaxfEIKI + 6 2 (l+e- '),rnIHI + 6 2(l+Tll VC > 0, Yrn > 0

taking c 6/IHI 12and n~ = 6/IKI, one gets

IH-K' < 6 2 + 26 Max(HHI 1 /2 ,IKI 1 /2)

For the second part, let A2 -H-K', thus

I xT (H-KxI <SA2ilx 2  f x

using the inequality

la-bi < Vfa -j2 (a,b > 0)

one gets

I (xTHx)l1/ 2 
-(xTKx) l/2, Ax Yx

and

6(EF) =Sup{I (xTHx)l/ (xTKx) 1/1 xI= 11 < A - K11

QED

Theorems 2 and 3 can be combined to give a relationship between

the distances d and A, which is a statement about square roots of

matrices.
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Theorem 4

Let H and K be two n x n positive semidefinite matrices, and

A H /2 K (/ then

ClIA-BI < 1H-K 1 1  < [21A-BIMax(1A,IBR) + IA-BI 1  2
n

I or

1/2 1/IH-KH/(1H-KHf + Max(IHII,IKR))~' + (Max(IHI,IKI))'

$1/
< RA-BI < L 1H-K111

_ - n

where I. n k n =2Vrn(n+2).

This theorem means that the square root satisfies a Lipschitz condition

on the cone of positive seinidefinite matrices:

1H /2kl2,< , H-id1 2  VH,K E p(O)

nn

where the Lipschitz constant depends only upon the dimension of Rn

X n. is bounded by a polynomial of degree 1 in the dimension of P(Rn).

1 It is now a simple matter to exctend Theorems 2, 3 and 4 to the

case of ellipsoids not necessarily centered at the origin.

Theorem 5 1 2K/

Let E =e +AS = e+H S and F =f +BS =f + S be two

ellipsoids in Rn, and A, B, H and K be n X( n positive semidefinite

syimmetric matrices. Denote 6=6(E,F), d = d(E,F), A = A(E,F) and

N ?ax(AIBE)= l x1/2',I1/2) 1 Max(D(E),D(F)), then the

following inequalities are satisfied:
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(k n+1) d < 6 < d< (k n+1)6

C1d< A < (d 2 +2dM) 1 /~2
n-

A 2(Yr2 +M2+ M) < d < 9, A

<_ < 6+ (6 2 +6)1/2

A 2/ (2(M+A)) < 6 < A

with k n I 2rn(n+2).

Proof:

ILet e = lie-fl1, and 6,1 d ,and A be the distances between
010 0

E -e and F -f.

one has d = d + e, A = A + c and,by Lemma 1, 6 < 6 + C, C <6
o 0 0

and 6 < 6. Hence a slight difference appears in the proofs for the

various cases.

For instance, Theorem 4 implies

2 1/2IA < (d + 2d M)

Hence A -A + e < (d 2 + 2d M) 1" 2 + e; the maximum of the right-hand
0 0 0

side (subject to d 0> 0, c > 0 and e + do= d) is attained for

c = 0 and d = d, and thus

A < (d 2+ 2dM)1/

or

d > A 2/(V/A+M2 + M)



-14-

The equivalent result from Theorem 3 implies

< (62 2 M)1/2

0- 0 0

hence

A = A + E < (62 + 26 M)1/2 + C

0 0 0

and the maximum of the right-hand side subject to E < 6 and 0 <

is clearly attained for e =6 and 6 =6, and thus0

A < (62 + 26M)1/2 + 6

or

A2

6> 
A

- 2 (M+6)

The other cases follow similarly. QED

4. Conclusion.

Three metrics on the space of ellipsoids have been shown to be

linked by various inequalities, and hence the induced topologies are

identical. Not only is the notion of convergence unique, but rates of

convergence can be related. Similar results clearly hold if the Euclidean

norm is replaced by any of the L norms.

If k and I were defined to be the smallest constants satisfyingn n

Theorems 2 and 4 (with Z < k ), it would be quite interesting to know
n- n

whether, or not, they must depend on n, the dimension.



-15-

5. References.

1) T. Bonnensen and W. Fenchel, Theorie der Konvexen Korper,

Chelsea, New York, New, York, U.S.A., 1948.

2) F. Hausdorff, Set Theory, 2nd ed., Chelsea, New York, New York,

U.S.A., 1962.



UNCLASSIFIED
SECURITY_ CLAMSIFICATSON OF THIS PAM (Mh. AN Ag _______________

REPORT DOCUMENTA.TION PAGE n"g owt.mo ,
1. EOR MuNIsm j.VT ACCESSION NO &RECIPIENT S CAT ALOG NON99m

S01 81-10 DM 1. e~o
14. TITLE (ME DSotI.) S. TYPE OF REPORT & PERIOD COVEREDo

On the Relationship Between the Hausdorff Technical Report
Distance and Natric Distances of Ellipsoids 6. PERFOMbbGOO. REPORuNUME

7. AUTNOW' S. OTRC OR GANT NUNDENsa)
Alan 3. Hoffman and Jean-Louis Coffin N00014-75-C-0267

9. PERFORMING ORGANZATION NAME AND ADDRESS :rlt EJEET. PO CGT. TASK
Department of Operations Research - SOL IoO~II~ nUdN

Stanord nivesityNR-047- 143
Stanford, CA 94305

ICONTROLLING OFFICE NAME AND ADDRESS It. REPORT DATE
Office of Naval Research - Dept. of the Navy August 1981

800 N Quicy Sreet12. NUMBER OF PAGES

UNCLASSIFIED

I$. DISTRIBUTION STATEMENT (ofif AW.*e#e)

This document has been approved for public release and sale;
its distribution is unlimited.

f7. DISTRIBUTION STATEMENT (.1d . Abirm inmd in Wek"2, II dlem enk XNnQ

Of. SUPPLEMENTARY NOTES

IS. KEY WORMS (Cemtb.. - uesg s* it "~*my md i*.tiUy by Weack aumia)
ellipsoids matrices
Hausdorff distance square root matrix

ASTRACT (CeAdhus - Im.w afle 49000 .MW 1d u0 by Wi.. OLAGOe

The space of ellipsoids may be metrized by the Hausdorff distance or by the
sum Of the distance between their centers and a distance between matrices.
Various Inequalities between metrics are established.

It Implies that the square root of positive semidefinite symmetric matrices
satisfies a Lipschitz condition, with a constant which depends only on the
dimension of the space.

OR M 1473 EDtiONo OF I Nov Sit OSOLETE

SCURITY CLASIFICATION OF T4IS PSO Ass m aSL"


